Detailed Analysis of Energy Cost by Source

Data from Published Sources including US Dept of Energy, International Energy Administration and Similar										
System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear			
Capital per Kw using published data noted	2,343	1,647	2,500	4,400	2,626	920	10,000			
Average Capacity Factor (Acf) % time of full power	16%	30%	70%	70%	65%	50%	90%			
Mid-Life Output (mlo) assumes preventive O&M	90%	95%	86%	100%	89%	93%	100%			
Useful Life (years) economic life	25	20	40	100	40	50	75			
O&M per Kw per year (at installations over 10 MW)	25	28.895	103.81	62.86	92	39.57	133.33			
Fuel per KwHr current prices but volatile	0	0	0	0	0.025	0.03842	0.0049			

These 6 data points above on each type of energy source provide all inputs required for analysis.

The sources for this data are noted in the document on this website titled "Sources for Energy Data".

Step A	Calculate Total Energy Produced by a 1 Kw power system over its useful A life Energy = 1Kw * Useful Life (hours) * Acf * mlo								
System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear		
Lifetime output per Kw	31,733	49,932	210,941	613,200	202,706	203,670	591,300		

Step B	Calculate the Quantity of 1Kw Units required to produce 876,0000 KwHr									
Quantity = 876000 ÷ Total Kw Lifetime Output										
System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear			
No. of 1-Kw systems for 876,000 KwHr	27.61	17.54	4.15	1.43	4.32	4.30	1.48			

Calculations that equalize all power generation sources and normalize units.

- Determine the Total Capital \$ required to produce that energy
- 2 Determine to total \$ for Operations & Maintenance to produce that energy
- 3 Determine the total \$ for Fuel to produce that energy
- Add the 3 values (Capital, O&M, and Fuel) to produce the total cost
- 5 Divide by 876000 (hours in 100 years) to determine the average cost per KwHr

1 Capital Required									
Capital = capital per Kw * Quantity of Units									
System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear		
Capital for 876000 KwHr	64,679	28,895	10,382	6,286	11,348	3,957	14,815		
Capital Amortization for 1.0000 KwHr	0.0738	0.0330	0.0119	0.0072	0.0130	0.0045	0.0169		

2 O&M Required	(DOE data specifies O&M per Kw power per year) O&M = O&M per Kw per year x Quantity of Systems x 100 years									
	System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear		
O&M fo	r 876,000 KwHr	69,013	50,693	43,110	8,980	39,758	17,019	19,753		
O&M f	or 1.0000 KwHr	0.0788	0.0579	0.0492	0.0103	0.0454	0.0194	0.0225		

3 Fuel Required	(DOE data specifies Fuel per KwHr)								
Fuel = Fuel/KwHr * 876,000									
	System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear	
	Fuel for 876,000 KwHr	-	-	-	-	21,900	33,656	4,292	
	Fuel for 1.0000 KwHr	-	-	-	-	0.0250	0.0384	0.0049	

4 Total Cost for 876,000 KwHr										
Total Cost = Capital + O&M + Fuel										
System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear			
	133,692	79,588	53,493	15,266	73,006	54,632	38,860			

5 Average Cost per Kilowatt Hour									
Average Cost to Produce Each KwHr = Total Cost for 876,000 hours ÷ 876000									
System	Solar	Wind	Geothermal	Hydro	Coal	Nat Gas	Nuclear		
	0.1526	0.0909	0.0611	0.0174	0.0833	0.0624	0.0444		